Complemented invariant subspaces of $H ^p,\;0 < p < 1$, and the Hahn-Banach extension property
نویسندگان
چکیده
منابع مشابه
On the Hahn-banach Extension Property
A self-contained and brief proof is given of the equivalence of the Hahn-Banach extension property (HB) and the conditional order completeness of the range space (LUB). Various other equivalences are discussed.
متن کاملComplemented Invariant Subspaces and Interpolation Sequences
It is shown that the invariant subspace of the Bergman space Ap of the unit disc, generated by a finite union of Hardy interpolation sequences, is complemented in Ap. Let D be the open unit disc of the complex plane C, and let H = H(D) denote the usual Hardy space. For 0 < p < ∞ the Bergman space A consists of analytic functions f on D such that ‖f‖p = ∫ D |f(z)| dA(z) < ∞, where dA is area mea...
متن کاملA FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کاملThe Hahn-Banach Property and the Axiom of Choice
We work in the set theory without the axiom of choice: ZF. Though the Hahn-Banach theorem cannot be proved in ZF, we prove that every Gâteauxdifferentiable uniformly convex Banach space E satisfies the following continuous Hahn-Banach property: if p is a continuous sublinear functional on E, if F is a subspace of E, and if f : F → R is a linear functional such that f ≤ p|F , then there exists a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1988
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1988-0915728-9